
Yrd.Doç.Dr. Tuncay UZUN 8086 Komut Tablosu Ek 1

5. 80x86 İşlemci Komut Tablosu

80x86 İşlemci Komut Tablosu komut kodlarının incelenmesi

8086 komut tablosunda bulunan kısaltmaların açıklamaları :
 reg / seg reg = yazmaç / parça yazmacı
 mem / imm = bellek / hemen adr. veri
 () = saat olarak zamanlama
 AL = 8-bit akümülatör (Aküm)
 AX = 16-bit akümülatör (Aküm)
 BX = Taban yazmacı
 CX = Sayıcı yazmacı
 DX = Değişken port yazmacı
 SP = Yığın işaretci yazmacı

 BP = Taban işaretci yazmacı
 SI = Kaynak dizin yazmacı
 DI = Varış dizin yazmacı
 IP = Komut işaretci
 F = Durum bayrakları
 CS = Kod parça yazmacı
 DS = Veri parça yazmacı
 SS = Yığın parça yazmacı
 ES = Diğer parça yazmacı

 Yukarıda/Aşağıda işaretsiz değerler için
kullanılır.

 Çok büyük = daha pozitif, Çok küçük = az
pozitif (daha negatif) işaretli değerler.

 EA = Etkin Adres (işlenenin hesap sonucu
bulunan mantıksal adresi)

 d = 1 ise ‘-e doğru, d = 0 ise ‘-den
 w = 1 ise word, w = 0 ise byte komut.
 s:w = 01 ise 16-bit imm. işlenen

 s:w = 11 ise işareti 16-bit’e genişletilmiş 8-
bit imm. işlenen.

 v = 0 ise “sayma” = 1 ; v = 1 ise “sayma” CL
yazmacının belirlediği değerdir.

 x = dikkate alınmayacak.
 z = bazı dizi işlemlerinde sıfır bayrağıyla

karşılaştırmada kullanılır

- 2 -

MOV varış,kaynak = Aktarmak
 reg  reg (2) , reg  mem (8+EA) , mem  reg (9+EA)

7 0 7 0 7 0 7 0

1 0 0 0 1 0 d w mod r e g r / m

 L yer değiş.w=0 H yer değiş.w=1

 adres-düşük adres-yüksek

 mod=01
 mod=10
 mod 00, mod 11’de yok!

BX=2010, SI=0008

Ör1: 8B 00 MOV AX,[BX+SI] ;mov ax,[2018]
 8B 00 MOV AX,[BX+SI] ;DS:2018
 26 ES:
 8B 00 MOV AX,[BX+SI] ;ES:2018
7 0 7 0 7 0 7 0

1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

d=1 bellekten (r/m) yazmaca (reg) yükleme
d=0 olsaydı yazmaçtan belleğe yükleme 89 00 MOV [BX+SI],AX

w=1 16-bit yazmaç
mod=00 yer değiştirme veya adres yok!
reg=000 w=1 olduğu için AX yazmacı
r/m=000 bellek hesabı BX+SI
komut çalışma süresi=8+EA, EA=7 olduğundan 15 saat çevrimi

Ör2: 8B 40 02 MOV AX,[BX+SI+02] ;mov ax,[201A]
 MOV AX,[BX+SI-80] ;mov ax,[1F98]
7 0 7 0 7 0

1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0

 0 0 0 0 0 0 1 0

d=1 bellekten yazmaca yükleme
w=1 16-bit yazmaç
mod=01 8-bit yer değiştirme var!
reg=000 w=1 olduğu için AX yazmacı
r/m=000 bellek hesabı BX+SI+yer değiş.
komut çalışma süresi=8+EA, EA=11 olduğundan 19 saat çevrimi

- 3 -

Ör3: 8B 80 02 10 MOV AX,[BX+SI+1002] ;mov ax,[301A]
 8B 80 02 80 MOV AX,[BX+SI+8002] ;mov ax,[A01A]
7 0 7 0 7 0 7 0

1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

d=1 bellekten yazmaca yükleme
w=1 16-bit yazmaç
mod=10 8-bit yer değiştirme var!
reg=000 w=1 olduğu için AX yazmacı
r/m=000 bellek hesabı BX+SI+yer değiş.
komut çalışma süresi=8+EA, EA=11 olduğundan 19 saat çevrimi

Ör4: 8B C1 MOV AX,CX
7 0 7 0

1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1

d=1 CX den AX yazmacına yükleme

d=0 olsaydı AX yazmacından CX ‘e yükleme 89 C1 MOV CX,AX
w=1 16-bit yazmaç
mod=11 8-bit yer değiştirme var!
reg=000 w=1 olduğu için AX yazmacı
r/m=001 w=1 olduğu için CX yazmacı
komut çalışma süresi=2 saat çevrimi

- 4 -

MOV varış,kaynak = Aktarmak
 reg  reg (2) , reg  mem (8+EA) , mem  reg (9+EA)

 reg  imm (10+EA) , mem  imm (10+EA)

 reg  imm (4)

 Aküm  mem (10)

 mem  Aküm (10)

 seg reg  reg (2) , seg reg  mem(8+EA)

 reg  seg reg (2) , mem  seg reg (9+EA)

0D82:0102 C7000001 MOV WORD PTR [BX+SI],0100
0D82:0106 B80001 MOV AX,0100
0D82:0109 A10001 MOV AX,[0100]
0D82:010C A30001 MOV [0100],AX
0D82:010F 8E00 MOV ES,[BX+SI]
0D82:0111 8C00 MOV [BX+SI],ES

- 5 -

80x87 Matematik yardımcı işlemci (Coprocessor) komut kodlarının incelenmesi

FILD Komut kodu: 1101 1111 0000 0000
 ESC MF MOD 000 R/M

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CC3 ES=0CC3 SS=0CC3 CS=0CC3 IP=0100 NV UP EI PL NZ NA PO NC
0CC3:0100 DF00 FILD WORD PTR [BX+SI] DS:0000=20CD

- 6 -

5.1. Veri Aktarma Komutları

5.1.1. LDS Load Pointer using DS

LDS destination,source

 Logic: DS ← (source + 2)
 destination ← (source)

 LDS loads into two registers the 32-bit pointer variable found in
 memory at source. LDS stores the segment value (the higher order word
 of source) in DS and the offset value (the lower order word of source)
 in the destination register. The destination register may be any any
 16-bit general register (that is, all registers except segment
 registers).

 Note: LES, Load Pointer Using ES, is a comparable
 instruction that loads the ES register rather than the DS register.

5.1.2. LES Load Pointer using ES

LES dest-reg,source

 Logic: ES ← (source)
 dest-reg ← (source + 2)

 LES loads into two registers the 32-bit pointer variable found in
 memory at source. LES stores the segment value (the higher order word
 of source) in ES and the offset value (the lower order word of source)
 in the destination register. The destination register may be any any
 16-bit general register (that is, all registers except segment
 registers).

 Note: LDS, Load Pointer Using DS, is a comparable
 instruction that loads the DS register rather than the ES register.

- 7 -

5.1.3. LEA Load Effective Address

LEA destination,source

 Logic: destination ← Addr(source)

 LEA transfers the offset of the source operand (rather than its value)
 to the destination operand. The source must be a memory reference, and
 the destination must be a 16-bit general register.

 Notes: This instruction has an advantage over using the
 OFFSET operator with the MOV instruction, in that
 the source operand can be subscripted. For example,
 this is legal:

 LEA BX, TABLE[SI] ;Legal
 the source operand can be subscripted. For example,
 this is legal:

 LEA BX, TABLE[SI] ;Legal

 whereas

 MOV BX, OFFSET TABLE[SI] ;Not legal

is illegal, since the OFFSET operator performs its calculation at assembly time and this address is not
known until run time.

Example : The DOS print string routine, Function 09h, requires a pointer to the string to be printed in
DS:DX. If the string you wished to print was at address "PRINT-ME" in the same data segment, you
could load DS:DX with the required pointer using this instruction:

 LEA DX, PRINT-ME

5.1.4. XLAT Translate

XLAT translate-table

 Logic: AL ← (BX + AL)

XLAT translates bytes via a table lookup. A pointer to a 256-byte translation table is loaded into BX.
The byte to be translated is loaded into AL; it serves as an index (ie, offset) into the translation table.
After the XLAT instruction is executed, the byte in AL is replaced by the byte located AL bytes from the
beginning of the translate-table.

Notes : Translate-table can be less than 256 bytes.
The operand, translate-table, is optional since a pointer to the table must be loaded into BX before the
instruction is executed.

- 8 -

The following example translates a decimal value (0 to 15) to the corresponding single hexadecimal
digit.

 lea bx, hex_table ;pointer to table into BX
 mov al, decimal_digit ;digit to be translated to AL
 xlat hex_table ;translate the value in AL
 . ;AL now contains ASCII hex digit
hex_table db '0123456789ABCDEF'

5.2. Aritmetik İşlem Komutları

5.2.1. AAA ASCII Adjust after Addition

AAA

 Logic: If (AL & 0Fh) > 9 or (AF = 1) then
 AL ← AL + 6
 AH ← AH + 1
 AF ← 1; CF ← 1
 else
 AF ← 0; CF ← 0
 AL ← AL & 0Fh

Converts the number in the lower 4 bits (nibble) of AL to an unpacked BCD number (high-order nibble
of AL is zeroed).
If the lower 4 bits of the number in AL is greater than 9, or the auxiliary carry flag is set, this instruction
converts AL to its unpacked BCD form by adding 6 (subtracting 10) to AL; adding 1 to AH; and setting
the auxiliary flag and carry flags. This instruction will always leave 0 in the upper nibble of AL.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.2. AAD ASCII Adjust before Division

AAD

 Logic: AL ← AH * 10 + AL
 AH ← 0

AAD converts the unpacked two-digit BCD number in AX into binary in preparation for a division using
DIV or IDIV, which require binary rather than BCD numbers.
AAD modifies the numerator in AL so that the result produced by a division will be a valid unpacked
BCD number. For the subsequent DIV to produce the correct result, AH must be 0. After the division,
the quotient is returned in AL, and the remainder in AH. Both high-order nibbles are zeroed.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

- 9 -

5.2.3. AAM ASCII Adjust after Multiply

AAM

 Logic: AH ← AL / 10
 AL ← AL MOD 10

This instruction corrects the result of a previous multiplication of two valid unpacked BCD operands. A
valid 2-digit unpacked BCD number is taken from AX, the adjustment is performed, and the result is
returned to AX. The high-order nibbles of the operands that were multiplied must have been 0 for this
instruction to produce a correct result.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.4. AAS ASCII Adjust after Subtraction

AAS

 Logic: If (AL & 0Fh) > 9 or AF = 1 then
 AL ← AL - 6
 AH ← AH - 1
 AF ← 1; CF ← 1
 else
 AF ← 0; CF ← 0
 AL ← AL & 0Fh

AAS corrects the result of a previous subtraction of two valid unpacked BCD operands, changing the
content of AL to a valid BCD number. The destination operand of the subtraction must have been
specified as AL. The high-order nibble of AL is always set to 0.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.5. CBW Convert Byte to Word

CBW

 Logic: if (AL < 80h) then
 AH ← 0
 else
 AH ← FFh

 CBW extends the sign bit of the AL register into the AH register. This instruction extends a signed
byte value into the equivalent signed word value.
 Note: This instruction will set AH to 0FFh if the sign bit (bit 7) of AL is set; if bit 7 of AL is not set, AH
will be set to 0. The instruction is useful for generating a word from a byte prior to performing byte
division.

- 10 -

5.2.6. CWD Convert Word to Doubleword

CWD

 Logic: if (AX < 8000h) then
 DX ← 0
 else
 DX ← FFFFh

 CWD extends the sign bit of the AX register into the DX register. This instruction generates the
double-word equivalent of the signed number in the AX register.

Note: This instruction will set DX to 0FFFFh if the sign bit (bit 15) of AX is set; if bit 15 of AX is not set,
DX will be set to 0.

5.2.7. DAA Decimal Adjust after Addition

DAA

 Logic: If (AL & 0Fh) > 9 or (AF = 1) then
 AL ← AL + 6
 AF ← 1
 else AF ← 0
 If (AL > 9Fh) or (CF = 1) then
 AL ← AL + 60h
 CF ← 1
 else CF ← 0

DAA corrects the result of a previous addition of two valid packed decimal operands (note that this
result must be in AL). This instruction changes the content of AL so that it will contain a pair of valid
packed decimal digits.

Note: Packed BCD stores one digit per nibble (4 bits); the least significant digit is in the lower nibble. It
is not possible to apply an adjustment after division or multiplication of packed BCD numbers. If you
need to use multiplication or division, it is better to use unpacked BCD numbers. See, for example,
the description of AAM (ASCII Adjust after Multiply).

- 11 -

5.2.8. DAS Decimal Adjust after Subtraction

DAS

 Logic: If (AL & 0Fh) > 9 or (AF = 1) then
 AL ← AL - 6
 AF ← 1
 else AF ← 0
 If (AL > 9Fh) or (CF = 1) then
 AL ← AL - 60h
 CF ← 1
 else CF ← 0

DAS corrects the result of a previous subtraction of two valid packed decimal operands (note that this
result must be in AL). This instruction changes the content of AL so that it will contain a pair of valid
packed decimal digits.

Note: Packed BCD stores one digit per nibble (4 bits); the least significant digit is in the lower nibble. It
is not possible to apply an adjustment after division or multiplication of packed BCD numbers. If you
need to use multiplication and division, it is better to use unpacked BCD numbers. See, for example,
the description of AAM (ASCII Adjust after Multiply).

5.2.9. DIV Divide, Unsigned

DIV source

 Logic: AL ← AX / source ; Source is byte
 AH ← remainder
 or
 AX ← DX:AX / source ; Source is word
 DX ← remainder

This instruction performs unsigned division. If the source is a byte, DIV divides the word value in AX by
source, returning the quotient in AL and the remainder in AH. If the source is a word, DIV divides the
double-word value in DX:AX by the source, returning the quotient in AX and the remainder in DX.

Notes: If the result is too large to fit in the destination AL or AX), an INT 0 (Divide by Zero) is
generated, and the quotient and remainder are undefined.
When an Interrupt 0 (Divide by Zero) is generated, the saved CS:IP value on the 80286 and 80386
points to the instruction that failed (the DIV instruction). On the 8088/8086, however, CS:IP points to
the instruction following the failed DIV instruction.

- 12 -

5.2.10. IDIV Integer Divide, Signed

IDIV source

 Logic: AL ← AX / source ; Byte source
 AH ← remainder
 or
 AX ← DX:AX / source ; Word source
 DX ← remainder

IDIV performs signed division. If source is a byte, IDIV divides the word value in AX by source,
returning the quotient in AL and the remainder in AH. If source is a word, IDIV divides the double-word
value in DX:AX by source, returning the quotient in AX and the remainder in DX.

Notes: If the result is too large to fit in the destination (AL or AX), an INT 0 (Divide by Zero) is
generated, and the quotient and remainder are undefined.
The 80286 and 80386 microprocessors are able to the largest negative number (80h or 8000h) as a
quotient for this instruction, but the 8088/8086 will generate an Interrupt 0 (Divide by Zero) if this
situation occurs.
When an Interrupt 0 (Divide by Zero) is generated, the saved CS:IP value on the 80286 and 80386
points to the instruction that failed (the IDIV instruction). On the 8088/8086, however, CS:IP points to
the instruction following the failed IDIV instruction.

5.2.11. MUL Multiply, Unsigned

MUL source

 Logic: AX ← source * AL ; if source is a byte
 or
 DX:AX = source * AX ; if source is a word

 MUL performs unsigned multiplication. If source is a byte, MUL
 multiplies source by AL, returning the product in AX. If source is a
 word, MUL multiplies source by AX, returning the product in DX:AX. The
 Carry and Overflow flags are set if the upper half of the result (AH
 for a byte source, DX for a word source) contains any significant
 digits of the product, otherwise they are cleared.

- 13 -

5.2.12. IMUL Integer Multiply, Signed

IMUL source

 Logic: AX ← AL * source ; if source is a byte
 or
 DX:AX ← AX * source ; if source is a word

 IMUL performs signed multiplication. If source is a byte, IMUL
 multiplies source by AL, returning the product in AX. If source is a
 word, IMUL multiplies source by AX, returning the product in DX:AX.
 The Carry Flag and Overflow Flag are set if the upper half of the
 result (AH for a byte source, DX for a word source) contains any
 significant digits of the product, otherwise they are cleared.

5.2.13. CMP Compare

CMP destination,source

 Logic: Flags set according to result of
 (destination - source)

 CMP compares two numbers by subtracting the source from the
 destination and updates the flags. CMP does not change the source or
 destination. The operands may be bytes or words.

5.3. Lojik İşlem Komutları

5.3.1. ROL Rotate Left

ROL destination,count

 ┌────┐ ┌─────────────┐
 │ CF │◄─┬─┼─Destination │◄─┐
 └────┘ │ └─────────────┘ │
 └─►────────────────┘

5.3.2. ROR Rotate Right

ROR destination,count

 ┌─────────────────◄──┐
 │ ┌───────────────┐ │ ┌──────┐
 └─►│ Destination │─┴─►│ CF │
 └───────────────┘ └──────┘

- 14 -

5.3.3. RCL Rotate through Carry Left

RCL destination,count

 ┌───►────────────────────┐
 ┌───┼──┐ ┌───────────────┐ │
 │ CF │◄─│ Destination │◄─┘
 └──────┘ └───────────────┘

5.3.4. RCR Rotate through Carry Right

RCR destination,count

 ┌────────────────────◄────┐
 │ ┌───────────────┐ ┌───┼──┐
 └─►│ Destination │─►│ CF │
 └───────────────┘ └──────┘

5.3.5. SAL/SHL Shift Arithmetic Left/Shift Logical Left

SAL/SHL destination,count

 ┌────┐ ┌─────────────┐
 │ CF │◄──│ Destination │◄── 0
 └────┘ └─────────────┘

5.3.6. SHR Shift Logical Right

SHR destination,count

 ┌─────────────┐ ┌────┐
 0 ──►│ Destination │──►│ CF │
 └─────────────┘ └────┘

5.3.7. SAR Shift Arithmetic Right

SAR destination,count

 ┌────┐ ┌─────────────┐ ┌────┐
 │ SF │──►│ Destination │──►│ CF │
 └────┘ └─────────────┘ └────┘

- 15 -

5.4. Dizi İşlem Komutları

5.4.1. REP Repeat

REP string-instruction

 Logic: while CX <> 0 ;for MOVS, LODS or STOS
 execute string instruction
 CX ← CX - 1
 ──
 while CX <> 0
 execute string instruction ;for CMPS or SCAS
 CX ← CX - 1
 if ZF = 0 terminate loop

 REP is a prefix that may be specified before any string instruction
 (CMPS, LODS, MOVS, SCAS, and STOS). REP causes the string instruction
 following it to be repeated, as long as CX does not equal 0; CX is
 decremented after each execution of the string instruction. (For CMPS
 and SCAS, REP will also terminate the loop if the Zero Flag is clear
 after the string instruction executes.)

Notes: If CX is initially 0, the REPeated instruction is
 skipped entirely.

 The test for CX equal to 0 is performed before the
 instruction is executed. The test for the Zero Flag
 clear──done only for CMPS and SCAS──is performed
 after the instruction is executed.

 REP, REPE (Repeat While Equal), and REPZ (Repeat
 While Zero) are all synonyms for the same
 instruction.

 REPNZ (Repeat Not Zero) is similar to REP, but when
 used with CMPS and SCAS, will terminate with the
 Zero Flag set, rather than cleared.

 REP is generally used with the MOVS (Move String)
 and STOS (Store String) instructions; it can be
 thought of as "repeat while not end of string."

Example: The following example moves 100 bytes from BUFFER1 to BUFFER2:

 CLD ;Move in the forward direction
 LEA SI, BUFFER1 ;Source pointer to SI
 LEA DI, BUFFER2 ; ...and destination to DI
 MOV CX,100 ;REP uses CX as the counter
 REP MOVSB ; ...and do it

- 16 -

5.4.2. REPNE Repeat While not Equal

REPNE string-instruction

 Logic: while CX <> 0 ;for MOVS, LODS or STOS
 execute string instruction
 CX ← CX - 1
 ──
 while CX <> 0 ;for CMPS or SCAS
 execute string instruction
 CX ← CX - 1
 if ZF <> 0 terminate loop ;This is only difference
 ;between REP and REPNE

 REPNE is a prefix that may be specified before any string instruction
 (CMPS, LODS, MOVS, SCAS, and STOS). REPNE causes the string
 instruction following it to be repeated, as long as CX does not equal
 0; CX is decremented after each execution of the string instruction.
 (For CMPS and SCAS, REP will also terminate the loop if the Zero Flag
 is set after the string instruction executes. Compare this to REP,
 which will terminate if the Zero Flag is clear.)

 Notes: If CX is initially 0, the REPeated instruction is
 skipped entirely.

 The test for CX equal to 0 is performed before the
 instruction is executed. The test for the Zero Flag
 set──done only for CMPS and SCAS──is performed after
 the instruction is executed.

 REPNE and REPNZ are synonyms for the same
 instruction.

 You do not need to initialize ZF before using
 repeated string instructions.

Example :The following example will find the first byte equal to 'A' in the 100-byte buffer at STRING.

 CLD ;Scan string in forward direction
 MOV AL,'A' ;Scan for 'A'
 LEA DI, STRING ;Address to start scanning at
 MOV CX,100 ;Scanning 100 bytes
REPNE SCASB ; ...and scan it
 DEC DI ;Back up DI to point to the 'A'

 Upon termination of the repeated SCASB instruction, CX will be equal
 to zero if a byte value of 'A' was not found in STRING, and non-zero
 if it was.

- 17 -

5.4.3. MOVSB Move String Byte

MOVSB

 Logic: (ES:DI) ← (DS:SI)
 if DF = 0
 SI ← SI + 1
 DI ← DI + 1
 else
 SI ← SI - 1
 DI ← DI - 1

 This instruction copies the byte pointed to by DS:SI into the location
 pointed to by ES:DI. After the move, SI and DI are incremented (if the
 direction flag is cleared) or decremented (if the direction flag is
 set), to point to the next byte.

Example : Assuming BUFFER1 as been defined somewhere as:

 BUFFFER1 DB 100 DUP (?)

 the following example moves 100 bytes from BUFFER1 to BUFFER2:

 CLD ;Move in the forward direction
 LEA SI, BUFFER1 ;Source address to SI
 LEA DI, BUFFER2 ;Destination address to DI
 MOV CX,100 ;CX is used by the REP prefix
REP MOVSB ; ...and move it.

5.4.4. MOVSW Move String Word

MOVSW

 Logic: (ES:DI) ← (DS:SI)
 if DF = 0
 SI ← SI + 2
 DI ← DI + 2
 else
 SI ← SI - 2
 DI ← DI - 2

 This instruction copies the word pointed to by DS:SI to the location
 pointed to by ES:DI. After the move, SI and DI are incremented (if the
 direction flag is cleared) or decremented (if the direction flag is
 set), to point to the next word.

- 18 -

Example : Assuming BUFFER1 as been defined somewhere as:
 BUFFFER1 DB 100 DUP (?)

 the following example moves 50 words (100 bytes) from BUFFER1 to
 BUFFER2:
 CLD ;Move in the forward direction
 LEA SI, BUFFER1 ;Source address to SI
 LEA DI, BUFFER2 ;Destination address to DI
 MOV CX,50 ;Used by REP; moving 50 words
REP MOVSW ; ...and move it.

5.4.5. CMPS Compare String (Byte or Word)

CMPS destination-string,source-string

 Logic: CMP (DS:SI), (ES:DI) ; Sets flags only
 if DF = 0
 SI ← SI + n ; n = 1 for byte, 2 for word
 DI ← DI + n
 else
 SI ← SI - n
 DI ← DI - n

 This instruction compares two values by subtracting the byte or word pointed to by ES:DI, from the
byte or word pointed to by DS:SI, and sets the flags according to the results of the comparison. The
operands themselves are not altered. After the comparison, SI and DI are incremented (if the direction
flag is cleared) or decremented (if the direction flag is set), in preparation for comparing the next
element of the string.
Note: This instruction is always translated by the assembler into either CMPSB, Compare String Byte,
or CMPSW, Compare String Word, depending upon whether source refers to a string of bytes or
words. In either case, you must explicitly load the SI and DI registers with the offset of the source and
destination strings.
Example:
 Assuming the definition:
 buffer1 db 100 dup (?)
 buffer2 db 100 dup (?)
the following example compares BUFFER1 against BUFFER2 for the first mismatch.
 cld ;Scan in the forward direction
 mov cx, 100 ;Scanning 100 bytes (CX is used by REPE)
 lea si, buffer1 ;Starting address of first buffer
 lea di, buffer2 ;Starting address of second buffer
repe cmps buffer1,buffer2 ;...and compare it.
 jne mismatch ;The Zero Flag will be cleared if there
 ;is a mismatch
match: . ;If we get here, buffers match
 .
mismatch:
 dec si ;If we get here, we found a mismatch.
 dec di ;Back up SI and DI so they point to the first mismatch

- 19 -

Upon exit from the REPE CMPS loop, the Zero Flag will be cleared if a mismatch was found, and set
otherwise. If a mismatch was found, DI and SI will be pointing one byte past the byte that didn't match;
the DEC DI and DEC SI backup these registers so they point to the mismatched characters.

5.4.6. CMPSB Compare String Byte

CMPSB

 Logic: CMP (DS:SI), (ES:DI) ; Sets flags only
 if DF = 0
 SI ← SI + 1
 DI ← DI + 1
 else
 SI ← SI - 1
 DI ← DI - 1

 This instruction compares two values by subtracting the byte pointed
 to by ES:DI, from the byte pointed to by DS:SI, and sets the flags
 according to the results of the comparison. The operands themselves
 are not altered. After the comparison, SI and DI are incremented (if
 the direction flag is cleared) or decremented (if the direction flag
 is set), in preparation for comparing the next element of the string.

Example: The following example compares BUFFER1 against BUFFER2 for the first
 mismatch.

 cld ;Scan in the forward direction
 mov cx, 100 ;Scanning 100 bytes (CX is used by REPE)
 lea si, buffer1 ;Starting address of first buffer
 lea di, buffer2 ;Starting address of second buffer
 repe cmpsb ; ...and compare it.
 jne mismatch ;The Zero Flag will be cleared if there
 ; is a mismatch
match: . ;If we get here, buffers match
 .
mismatch:
 dec si ;If we get here, we found a mismatch.
 dec di ;Back up SI and DI so they point to the
 . ; first mismatch
Upon exit from the REPE CMPSB loop, the Zero Flag will be cleared if a mismatch was found, and set
otherwise. If a mismatch was found, DI and SI will be pointing one byte past the byte that didn't match;
the DEC DI and DEC SI instructions backup these registers so they point to the mismatched
characters.

- 20 -

5.4.7. CMPSW Compare String Word

CMPSW

 Logic: CMP (DS:SI), (ES:DI) ; Sets flags only
 if DF = 0
 SI ← SI + 2
 DI ← DI + 2
 else
 SI ← SI - 2
 DI ← DI - 2

 This instruction compares two numbers by subtracting the word pointed
 to by ES:DI, from the word pointed to by DS:SI, and sets the flags
 according to the results of the comparison. The operands themselves
 are not altered. After the comparison, SI and DI are incremented (if
 the direction flag is cleared) or decremented (if the direction flag
 is set), in preparation for comparing the next element of the string.

Example :The following example compares BUFFER1 against BUFFER2 for the first
 mismatch.

 cld ;Scan in the forward direction
 mov cx, 50 ;Scanning 50 words (100 bytes)
 lea si, buffer1 ;Starting address of first buffer
 lea di, buffer2 ;Starting address of second buffer
repe cmpsw ; ...and compare it.
 jne mismatch ;The Zero Flag will be cleared if there
 ; is a mismatch
match: . ;If we get here, buffers match
 .
mismatch:
 dec si ;If we get here, we found a mismatch.
 dec si ;Back up DI and SI so they point to the
 dec di ; first mismatch
 dec di

Upon exit from the REPE CMPSW loop, the Zero Flag will be cleared if a
mismatch was found, and set otherwise. If a mismatch was found, DI and
SI will be pointing one word (two bytes) past the word that didn't
match; the DEC DI and DEC SI pairs backup these registers so they
point to the mismatched characters.

- 21 -

5.4.8. SCAS Scan String (Byte or Word)

SCAS destination-string

 Logic: CMP Accumulator, (ES:DI) ;Sets flags only
 if DF = 0
 DI ← DI + n ;n = 1 for byte, 2 for word
 else
 DI ← DI - n

 This instruction compares the accumulator (AL or AX) to the byte or
 word pointed to by ES:DI. SCAS sets the flags according to the results
 of the comparison; the operands themselves are not altered. After the
 comparison, DI is incremented (if the direction flag is cleared) or
 decremented (if the direction flag is set), in preparation for
 comparing the next element of the string.

 Notes: This instruction is always translated by the
 assembler into either SCASB, Scan String Byte, or
 SCASW, Scan String Word, depending upon whether
 destination-string refers to a string of bytes or
 words. In either case, however, you must explicitly
 load the DI register with the offset of the string.

 SCAS is useful for searching a block for a given
 byte or word value. Use CMPS, Compare String, if you
 wish to compare two strings (or blocks) in memory,
 element by element.

Example : Assuming the definition:

 LOST_A DB 100 DUP(?)

 the following example searches the 100-byte block starting at LOST_A
 for the character 'A' (65 decimal).

 MOV AX, DS
 MOV ES, AX ;SCAS uses ES:DI, so copy DS to ES
 CLD ;Scan in the forward direction
 MOV AL, 'A' ;Searching for the lost 'A'
 MOV CX,100 ;Scanning 100 bytes (CX is used by REPNE)
 LEA DI, LOST_A ;Starting address to DI
REPNE SCAS LOST_A ; ...and scan it.
 JE FOUND ;The Zero Flag will be set if we found
 ; a match.
NOTFOUND: . ;If we get here, no match was found
 .
 .
FOUND: DEC DI ;Back up DI so it points to the first matching 'A'

- 22 -

 .

Upon exit from the REPNE SCAS loop, the Zero Flag will be set if a match was found, and cleared
otherwise. If a match was found, DI will be pointing one byte past the match location; the DEC DI at
FOUND takes care of this problem.

5.4.9. LODSB Load String Byte

LODSB

 Logic: AL ← (DS:SI)
 if DF = 0
 SI ← SI + 1
 else
 SI ← SI - 1

 LODSB transfers the byte pointed to by DS:SI into AL and increments or
 decrements SI (depending on the state of the Direction Flag) to point
 to the next byte of the string.

 Note: Although it is legal to repeat this instruction, it
 is almost never done since doing so would
 continually overwrite the value in AL.

Example : The following example sends the eight bytes at INIT_PORT to port 250.
 (Don't try this on your machine, unless you know what's hanging off
 port 250.)

INIT_PORT:
 DB '$CMD0000' ;The string we want to send
 .
 .
 CLD ;Move forward through string at INIT_PORT
 LEA SI, INIT_PORT ;SI gets starting address of string
 MOV CX, 8 ;CX is counter for LOOP instruction
AGAIN: LODSB ;Load a byte into AL...
 OUT 250,AL ; ...and output it to the port.
 LOOP AGAIN

- 23 -

5.4.10. LODSW Load String Word

LODSW

 Logic: AX ← (DS:SI)
 if DF = 0
 SI ← SI + 2
 else
 SI ← SI - 2

 LODSW transfers the word pointed to by DS:SI into AX and increments or
 decrements SI (depending on the state of the Direction Flag) to point
 to the next word of the string.

 Note: Although it is legal to repeat this instruction, it
 is almost never done since doing so would
 continually overwrite the value in AL.

Example : The following example sends the eight bytes at INIT_PORT to port 250.
 (Don't try this on your machine, unless you know what's hanging off
 port 250.)

INIT_PORT:
 DB '$CMD0000' ;The string we want to send
 .
 .
 CLD ;Move forward through string at INIT_PORT
 LEA SI, INIT_PORT ;SI gets starting address of string
 MOV CX, 4 ;Moving 4 words (8 bytes)
AGAIN: LODSW ;Load a word into AX...
 OUT 250,AX ; ...and output it to the port.
 LOOP AGAIN

5.4.11. STOSB Store String Byte

STOSB

 Logic: (ES:DI) ← AL
 if DF = 0
 DI ← DI + 1
 else
 DI ← DI - 1

 STOSB copies the value in AL into the location pointed to by ES:DI. DI
 is then incremented (if the direction flag is cleared) or decremented
 (if the direction flag is set), in preparation for storing AL in the
 next location.

- 24 -

 Notes: This instruction is always translated by the
 assembler into either STOSB, Store String Byte, or
 STOSW, Store String Word, depending upon whether
 destination-string refers to a string of bytes or
 words. In either case, however, you must explicitly
 load the DI register with the offset of the string.

Example : When used in conjunction with the REP prefixes, the Store String instructions are useful for
initializing a block of memory. For example, the following code would initialize the 100-byte memory
block at BUFFER to 0:

 MOV AL,0 ;The value to initialize BUFFER to
 LEA DI,BUFFER ;Starting location of BUFFER
 MOV CX,100 ;Size of BUFFER
 CLD ;Let's move in forward direction
 REP STOS BUFFER ;Compare this line to example for STOSB

5.4.12. STOSW Store String Word

 Logic: (ES:DI) ← AX
 if DF = 0
 DI ← DI + 2
 else
 DI ← DI - 2

 STOSW copies the value in AX into the location pointed to by ES:DI. DI
 is then incremented (if the direction flag is cleared) or decremented
 (if the direction flag is set), in preparation for storing AX in the
 next location.
 When used in conjunction with the REP prefixes, the Store String
 instructions are useful for initializing a block of memory. For
 When used in conjunction with the REP prefixes, the Store String
 instructions are useful for initializing a block of memory. For
 example, the following code would initialize the 100-byte memory block
 at BUFFER to 0:

 MOV AX,0 ;The value to initialize BUFFER to
 LEA DI,BUFFER ;Starting location of BUFFER
 MOV CX,50 ;Size of BUFFER, in words
 CLD ;Let's move in forward direction
REP STOSW ;Compare this line to example for STOS

- 25 -

5.5. Denetim Aktarma Komutları

5.5.1. JMP Jump Unconditionally

JMP target

 Jump Condition: Jump always

 JMP always transfer control to the target location. Unlike CALL, JMP
 does not save IP, because no RETurn is expected. An intrasegment JMP
 may be made either through memory or through a 16-bit register; an
 intersegment JMP can be made only through memory.

Notes: If the assembler can determine that the target of an
 intrasegment jump is within 127 bytes of the current
 location, the assembler will automatically generate
 a short-jump (two-byte) instruction; otherwise, a 3-
 byte NEAR JMP is generated.

 You can force the generation of a short jump by
 explicit use of the operator "short," as in:

 JMP short near_by

5.5.2. CALL Call Procedure

CALL procedure_name

 Logic: if FAR CALL (inter-segment)
 PUSH CS
 CS ← dest_seg
 PUSH IP
 IP ← dest_offset

 CALL transfers control to a procedure that can either be within the
 current segment (a NEAR procedure) or outside it (a FAR procedure).
 The two types of CALLs result in different machine instructions, and
 the RET instruction that exits from the procedure must match the type
 of the CALL instruction (the potential for mismatch exists if the
 procedure and the CALL are assembled separately).

- 26 -

5.5.3. RET Return from Procedure

RET optional-pop-value

 Logic: POP IP
 If FAR RETURN (inter-segment)
 POP CS
 SP ← SP + optional-pop-value (if specified)

 RET transfers control from a called procedure back to the instruction
 following the CALL, by:
 ■ Popping the word at the top of the stack into IP
 ■ If the return is an intersegment return:
 ■ Popping the word now at the top of the stack into CS
 ■ Adding the optional-pop-value, if specified, to SP
The assembler will generate an intrasegment RET if the procedure containing the RET was
designated by the programmer as NEAR, and an intersegment RET if it was designated FAR. The
optional-pop-value specifies a value to be added to SP, which has the effect of popping

5.5.4. JA Jump If Above

JA short-label

 Jump Condition: Jump if CF = 0 and ZF = 0

Used after a CMP or SUB instruction, JA transfers control to short-label if the first operand (which
should be unsigned) was greater than the second operand (also unsigned). The target of the jump
must be within -128 to +127 bytes of the next instruction.

Notes: JNBE, Jump Not Below or Equal, is the same instruction as JA.
 JA, Jump on Above, should be used when comparing unsigned numbers.
 JG, Jump on Greater, should be used when comparing signed numbers.

5.5.5. JAE Jump If Above or Equal

JAE short-label

 Jump Condition: Jump if CF = 0

Used after a CMP or SUB instruction, JAE transfers control to short-label if the first operand (which
should be unsigned) was greater than or equal to the second operand (also unsigned). The target of
the jump must be within -128 to +127 bytes of the next instruction.

Notes: JNB (Jump Not Below) is the same instruction as JAE.
JAE, Jump on Above or Equal, should be used when comparing unsigned numbers.
JGE, Jump on Greater or Equal, should be used when comparing signed numbers.

- 27 -

5.5.6. JC Jump If Carry

JC short-label

 Jump Condition: Jump if CF = 1

 JC transfers control to short-label if the Carry Flag is set. The
 target of the jump must be within -128 to +127 bytes of the next
 instruction.

Note: JB (Jump if Below), JC, and JNAE (Jump if Not Above or Equal) are all synonyms for the same
instruction.
Use JNC, Jump if No Carry, to jump if the carry flag is clear.

5.5.7. LOOP Loop on Count

LOOP short-label

 Logic: CX ← CX - 1
 If (CX <> 0)
 JMP short-label

 LOOP decrements CX by 1, then transfers control to short-label if CX
 is not 0. Short-label must be within -128 to +127 bytes of the next
 instruction.

5.5.8. LOOPE Loop While Equal

LOOPE short-label

 Logic: CX ← CX - 1
 If CX <> 0 and ZF = 1
 JMP short-label

 Used after a CMP or SUB, LOOPE decrements CX by 1, then transfers
 control to short-label if the first operand of the CMP or SUB is equal
 to the second operand. Short-label must be within -128 to +127 bytes
 of the next instruction.

 Note: LOOPZ, Loop if Zero, is the same instruction.

- 28 -

5.5.9. LOOPNE Loop While not Equal

LOOPNE short-label

 Logic: CX ← CX - 1
 If CX <> 0 and ZF = 0
 JMP short-label

 Used after a CMP or SUB, LOOPNE decrements CX by 1, then transfers
 control to short-label if the first operand of the CMP or SUB is not
 equal to the second operand. Short-label must be within -128 to +127
 bytes of the next instruction.

Note : LOOPNZ, Loop While Not Zero, is the same instruction.

5.5.10. JCXZ Jump If CX Register Zero

JCXZ short-label

 Jump Condition: Jump if CX = 0

JCXZ transfers control to short-label if the CX register is 0. The target of the jump must be within -128
to +127 bytes of the next instruction.

Note: This instruction is commonly used at the beginning of a loop to bypass the loop if the counter
variable (CX) is at 0.

5.5.11. INT Interrupt

INT interrupt-num

 Logic: PUSHF ; Push flags onto stack
 TF ← 0 ; Clear Trap Flag
 IF ← 0 ; Disable Interrupts
 CALL FAR (INT*4) ; Call the interrupt handler

INT pushes the flags register, clears the Trap and Interrupt-enable Flags, pushes CS and IP, then
transfers control to the interrupt handler specified by the interrupt-num. If the interrupt handler returns
using an IRET instruction, the original flags are restored.

Notes: The flags are stored in the same format as that used by the PUSHF instruction.The address of
the interrupt vector is determined by multiplying the interrupt-num by 4. The first word at the resulting
address is loaded into IP, and the second word into CS.
All interrupt-nums except type 3 generate a two-byte opcode; type 3 generates a one-byte instruction
called the Breakpoint interrupt.

5.5.12. IRET Interrupt Return

IRET

- 29 -

 Logic: POP IP
 POP CS
 POPF ; Pop flags from stack

 IRET returns control from an interrupt routine to the point where the
 interrupt occurred, by popping IP, CS, and the Flag registers.

5.5.13. HARDWARE INTERRUPTS

INT 00h (0) Divide by 0
INT 01h (1) Single Step
INT 02h (2) Non-Maskable Interrupt (NMI)
INT 03h (3) Breakpoint
INT 04h (4) Overflow
INT 05h (5) Print Screen
INT 08h (8) System Timer
INT 09h (9) Keyboard
INT 10h (16) Video and Screen Services
INT 11h (17) Read Equipment-List
INT 12h (18) Report Memory Size
INT 13h (19) Disk I/O Services, Floppy and Hard Disks
INT 14h (20) Serial I/O Services (Communications Ports)
INT 15h (21) Cassette and Extended Services
INT 16h (22) Keyboard I/O Services
INT 17h (23) Printer I/O Services
INT 18h (24) BASIC Loader Service
INT 19h (25) Bootstrap Loader Service
INT 1Ah (26) System Timer and Clock Services
INT 1Bh (27) Keyboard Break
INT 1Ch (28) User Timer Tick
INT 4Ah (74) User Alarm
INT 70h (112) Real-Time Clock

Example: INT 05h (5) Print Screen

 Prints the current screen contents to the first parallel printer (LPT1).

This interrupt can be called from within a program as well as by means of the Shift-PrtSc key
combination. The service returns no register values but sets a status code at memory location
0000:0500h. The possible values of this status code, and their meanings, are as follows:

 00h Print Screen not called, or operation completed
 01h Print Screen currently in progress
 FFh Error encountered during most recent Print Screen

5.5.14. DOS INTERRUPTS

INT 20h (32) Terminate Program

- 30 -

INT 21h (33) DOS Service Calls
INT 22h (34) Terminate Address
INT 23h (35) Break Address
INT 24h (36) Critical-Error Handler Address
INT 25h (37) Absolute Disk Read
INT 26h (38) Absolute Disk Write
INT 27h (39) Terminate and Stay Resident
INT 28h (40) Reserved
INT 29h (41) Reserved
INT 2Ah (42) Reserved
INT 2Bh (43) Reserved
INT 2Ch (44) Reserved
INT 2Dh (45) Reserved
INT 2Eh (46) Reserved
INT 2Fh... (47) Multiplex Interrupt Overview
INT 2Fh (47) Multiplex Interrupt (PRINT)  DOS 3.1
INT 2Fh (47) Multiplex Interrupt (ASSIGN)  DOS 3.1
INT 2Fh (47) Multiplex Interrupt (SHARE)  DOS 3.1
INT 2Fh (47) Multiplex Interrupt (APPEND)  DOS 3.1
INT 30h (48) Reserved

Example : INT 25h (37) Absolute Disk Read

 Reads one or more sectors on a specified logical disk.

 On entry: AL Drive number (0=A, 1=B)
 CX Number of sectors to read
 DX Starting sector number
 DS:DX Buffer to store sector read

 Returns: AX Error code (if CF is set; see below)
 Flags DOS leaves the flags on the stack

5.5.15. DOS FUNCTIONS

00h (0) Terminate Program
01h (1) Read Keyboard Character and Echo
02h (2) Character Output
03h (3) Auxiliary Character Input
04h (4) Auxiliary Character Output
05h (5) Printer Character Output
06h (6) Direct Console Character I/O
07h (7) Direct Console Character Input without Echo
08h (8) Console Character Input without Echo
09h (9) Print String
0Ah (10) Buffered Input
0Bh (11) Check Standard Input Status
0Ch (12) Clear Input Buffer, then Invoke Function
0Dh (13) Disk Reset
0Eh (14) Select Default Drive

- 31 -

0Fh (15) Open File, Using FCBs
10h (16) Close File, Using FCBs
11h (17) Search for First Matching File, Using FCBs
12h (18) Search for Next Matching File, Using FCBs
13h (19) Delete File, Using FCBs
14h (20) Sequential Read, Using FCBs

Example : Function 01h (1) Read Keyboard Character and Echo

 Reads a character from the standard input device (usually the
 keyboard), and echoes it to the standard output device (usually the
 screen).

 On entry: AH 01h

 Returns: AL Character read

 Extended ASCII For the special keys, such as the cursor and
 function keys, this function returns a 0 in AL; call
 the function again to read the extended code of the
 special character. (See the Key codes for a listing
 of the extended codes.)

 Ctrl-Break & DOS generates an INT 23h.
 Ctrl-C
Note: This function checks for Ctrl-Break and Ctrl-C. Use Function 07h if you don't wish to check Ctrl-
Break and Ctrl-C.

5.6. İşlemci Denetim Komutları

5.6.1. ESC Escape

ESC coprocessor's-opcode,source

 ESC is used to pass control from the microprocessor to a coprocessor,
 such as an 8087 or 80287. In response to ESC, the microprocessor
 accesses a memory operand──the instruction for the coprocessor──and
 places it on the bus. The coprocessor watches for ESC commands and
 executes the instruction placed on the bus, using the effective
 address of source.

Notes : In order to synchronize with the math coprocessor, the programmer must explicitly code the
WAIT instruction preceding all ESC instructions. The instruction preceding all ESC instructions. The
80286 and 80386 have automatic instruction
synchronization, hence WAITs are not needed.

5.6.2. HLT Halt the Processor

HLT

- 32 -

 This instruction halts the CPU. The processor leaves the halted state
 in response to a non-maskable interrupt; a maskable interrupt with
 interrupts enabled; or activation of the reset line.

5.6.3. WAIT Wait

 Logic: None

 WAIT causes the processor to enter a wait state. The processor will
 remain inactive until the TEST input on the microprocessor is driven
 active.

Notes : This instruction is used to synchronize external
hardware, such as a coprocessor.

5.6.4. LOCK Lock the Bus

LOCK

 LOCK is a one-byte prefix that can precede any instruction. LOCK
 causes the processor to assert its bus lock signal while the
 instruction that follows is executed. If the system is configured such
 that the LOCK signal is used, it prevents any external device or event
 from accessing the bus, including interrupts and DMA transfers.

 Note: This instruction was provided to support multiple
 processor systems with shared resources. In such a
 system, access to those resources is generally
 controlled via a software-hardware combination using
 semaphores.
This instruction should only be used to prevent
other bus masters from interrupting a data movement
operation. This prefix should only be used with
XCHG, MOV, and MOVS.

