Yrd.Dog¢.Dr. Tuncay UZUN 8086 Komut Tablosu

Ek 1

5. 80x86 islemci Komut Tablosu

80x86 islemci Komut Tablosu komut kodlarinin incelenmesi

Y.Do¢.Dr. Tuncay UZUN
Kisaltiimis Komut Adi ve Aciklama

8086 Komut Tablosu sf 1/3
Komut Kodlarl

VERI AKTARMA KOMUTLARI
ﬁOV varig, kaynak = Aktarmak
reg « imm (10+EA) , mem « imm (10+EA)
reg « imm (4)
AkOm < mem (10)
mem <« Akim (10)
seg reg « reg (2) , seg reg « mem(8+EA)
reg < seg reg (2) , mem « seg reg (9+EA)

reg « reg (2) , reg « mem (8+EA) , mem « reg (9+EA)

0ld[wmod reg | r/m

1 1(wmoq0 0 0fr/m Veri w=1 ise veri

w=1 ise veri

adres-ylUksek

adres-ylksek

moq0|reg| r/m

R PN NN NN U N Y

0
1
0
0
0
0
0

O|oO|=|=|—=|Oo|C

01

00

1[w] reg veri
000 adres-dlsiik
000

011

011

Wi
w| adres-diisiik
0
0

moq0jreg| r/

8086 komut tablosunda bulunan kisaltmalarin aciklamalari :

reg / seg reg = yazmag / parga yazmaci

mem /imm = bellek / hemen adr. veri

() = saat olarak zamanlama

AL = 8-bit akimulatér (Akim)

AX = 16-bit akimulatoér (Akim)

BX = Taban yazmaci

CX = Sayicl yazmaci

DX = Degigken port yazmaci

SP =Yigin isaretci yazmaci

Yukarida/Asagida isaretsiz de@erler igin

kullanilir.

o Cok blyulk = daha pozitif, Cok kliglk = az
pozitif (daha negatif) isaretli degerler.

e EA = Etkin Adres (islenenin hesap sonucu
bulunan mantiksal adresi)

e d=1ise‘'-edogru,d=0ise ‘-den
w = 1 ise word, w = 0 ise byte komut.

e s:w =01 ise 16-bit imm. islenen

BP = Taban isaretci yazmaci

Sl = Kaynak dizin yazmaci

DI = Varis dizin yazmaci

IP = Komut isaretci

F = Durum bayraklari

CS = Kod parga yazmaci

DS = Veri parga yazmaci

SS =Yigin parga yazmaci

ES = Diger parca yazmaci

s:w = 11 ise isareti 16-bit'e genigletilmis 8-
bit imm. iglenen.

v=0ise “sayma’=1;v=1ise “sayma” CL
yazmacinin belirledigi degerdir.

x = dikkate alinmayacak.

z = bazi dizi islemlerinde sifir bayragiyla
karsilastirmada kullanilir

MOV varig,kaynak = Aktarmak
reg < reg (2) , reg « mem (8+EA) , mem « reg (9+EA)

7 07 07 0 7 0
10001 old/wlmod| reg|r/m

L yer degis.w=0 H yer degis.w=1

adres-diusuk adres-yiiksek
|\ ~ _ j
mod=01 Y
mod=10

mod 00, mod 11°de yok!
BX=2010, SI1=0008

Or1: 8B 00 MOV AX,[BX+SI] ;mov ax,[2018]
8B 00 MOV AX,[BX+SI] ;DS:2018

26 ES:

8B 00 MOV AX,[BX+SI] ;ES:2018
7 07 07 0 7 0
10001 o0[1/1]o o]o 0o 0]oo00]
d=1 bellekten (r/m) yazmaca (reg) yukleme

d=0 olsaydi yazmacgtan bellege yukleme 89 00 MOV [BX+SI],AX
w=1 16-bit yazmag
mod=00 yer degistirme veya adres yok!
reg=000 w=1 oldugu i¢cin AX yazmaci
r’Im=000 bellek hesabi BX+SI
komut ¢alisma suresi=8+EA, EA=7 oldugundan 15 saat ¢evrimi

Or2: 8B 40 02 MOV AX,[BX+SI+02] ;mov ax,[201A]
MOV AX,[BX+SI-80] ;mov ax,[1F98]

7 07 07 0
10001 o[1/1]o 1]o 00000

00000010 |
d=1 bellekten yazmaca yiikleme
w=1 16-bit yazmag

mod=01 8-bit yer degistirme var!

reg=000 w=1 oldugu icin AX yazmaci

r’Im=000 bellek hesabi BX+Sl+yer degis.

komut ¢galisma suresi=8+EA, EA=11 oldugundan 19 saat ¢cevrimi

-3-

Or3: 8B 80 02 10 MOV AX,[BX+SI+1002] ;mov ax,[301A]
8B 80 02 80 MOV AX,[BX+SI+8002] ;mov ax,[A01A]

7 0 7 07 0 7 0
10001 o[1/1]Jo oJooo0]ooo]}

d=1 bellekten yazmaca yiikleme

w=1 16-bit yazmag

mod=10 8-bit yer degistirme var!

reg=000 w=1 oldugu icin AX yazmaci

r’Im=000 bellek hesabi BX+Sl+yer degis.

komut ¢calisma suresi=8+EA, EA=11 oldugundan 19 saat ¢evrimi

Or4: 8B C1 MOV AX,CX
7 07 0
10001 o[1/1]1 1]/ooo0]o01]}

d=1 CX den AX yazmacina yukleme
d=0 olsaydi AX yazmacindan CX ‘e yukleme 89 C1 MOV CX,AX
w=1 16-bit yazmag
mod=11 8-bit yer degistirme var!
reg=000 w=1 oldugu i¢cin AX yazmaci
rIm=001 w=1 oldugu i¢in CX yazmaci
komut ¢calisma suresi=2 saat ¢cevrimi

MOV varig,kaynak = Aktarmak
reg < reg (2) , reg < mem (8+EA) , mem <« reg (9+EA)
reg < imm (10+EA) , mem « imm (10+EA)
reg < imm (4)
Akim < mem (10)
mem « Akim (10)
seg reg < reg (2) , seg reg « mem(8+EA)
reg < seg reg (2) , mem « seg reg (9+EA)

0D82:0102 C7000001 MOV WORD PTR [BX+SI],0100
0D82:0106 B80001 MOV AX,0100

0D82:0109 A10001 MOV AX,[0100]

0D82:010C A30001 MOV [0100],AX

0D82:010F 8EO00 MOV ES,[BX+SI]

0D82:0111 8CO00 MOV [BX+SI],ES

-5-

80x87 Matematik yardimci islemci (Coprocessor) komut kodlarinin incelenmesi

Instruction .
Optional
First Byte Second Byte Field
1 11011 OPA 1 MOD 1 OPB R/M DISP
2 11011 MF OPA MOD OPB * R/M DISP
3 11011 d P OPA 1 1 OPB * ST (i)
4 11011 0 0 1 1 1 1 OoP
5 11011 0 1 1 1 1 1 OoP
15-11 10 9 8 7 6 5 4 3 2 10
NOTES:
OP = Instruction opcode, possibly split into two fields OPA and OPB
MF = Memory Format d = Destination
00— 32-Bit Real 0— Destination is ST(0)
01— 32-Bit Integer 0— Destination is ST(i)
10— 64-Bit Real R XOR d = 0— Destination (op) Source
11— 186-Bit Integer R XOR d = 1— Source (op) Destination
*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit
P = Pop ST(i) = Register Stack Element/
0— Do not pop stack 000 = Stack Top
1— Pop stack after operation 001 = Second Stack Element
ESC = 11011 :
[]
111 = Eighth Stack Element
80C187 Extensions to the 80C186 Instruction Set
Encoding Clock Count Range
Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2-3 Real Integer Real Integer
DATA TRANSFER
FLD = Loada
Integer /real memory to ST(0) | ESCMF1 | MODOO0OR/M | DISP 40 65-72 59 67-71
Long integer memory to ST(0) [EsC1t1 | MOD 101R/M | DISP 90-101
Extended real memory to ST(0) [EsCoi1 | MOD 101R/M | DISP 74
BCD memory to ST(0) | ESC111 | MOD 100R/M | DISP 296-305
ST(i) to ST(0) [Escooi [11000ST@H) | 16

FILD Komut kodu: 1101 1111 00888000
ESC ME MOD 000 R/M

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CC3 ES=0CC3 SS=0CC3 CS=0CC3 IP=0100 NV UP El PL NZ NA PO NC
0CC3:0100 DFO00 FILD WORD PTR [BX+SI] DS:0000=20CD

5.1. Veri Aktarma Komutlari
5.1.1. LDS Load Pointer using DS
LDS destination,source

Logic: DS <« (source + 2)
destination < (source)

LDS loads into two registers the 32-bit pointer variable found in

memory at source. LDS stores the segment value (the higher order word
of source) in DS and the offset value (the lower order word of source)

in the destination register. The destination register may be any any
16-bit general register (that is, all registers except segment

registers).

Note: LES, Load Pointer Using ES, is a comparable
instruction that loads the ES register rather than the DS register.

5.1.2. LES Load Pointer using ES
LES dest-reg,source

Logic: ES « (source)
dest-reg « (source + 2)

LES loads into two registers the 32-bit pointer variable found in

memory at source. LES stores the segment value (the higher order word
of source) in ES and the offset value (the lower order word of source)

in the destination register. The destination register may be any any
16-bit general register (that is, all registers except segment

registers).

Note: LDS, Load Pointer Using DS, is a comparable
instruction that loads the DS register rather than the ES register.

5.1.3. LEA Load Effective Address
LEA destination,source
Logic: destination < Addr(source)
LEA transfers the offset of the source operand (rather than its value)
to the destination operand. The source must be a memory reference, and
the destination must be a 16-bit general register.
Notes: This instruction has an advantage over using the

OFFSET operator with the MOV instruction, in that
the source operand can be subscripted. For example,

this is legal:
LEA BX, TABLE[SI] ;Legal
the source operand can be subscripted. For example,
this is legal:
LEA BX, TABLE[SI] ;Legal
whereas

MOV BX, OFFSET TABLE[SI] ;Not legal

is illegal, since the OFFSET operator performs its calculation at assembly time and this address is not
known until run time.

Example : The DOS print string routine, Function 09h, requires a pointer to the string to be printed in
DS:DX. If the string you wished to print was at address "PRINT-ME" in the same data segment, you
could load DS:DX with the required pointer using this instruction:

LEA DX, PRINT-ME

5.1.4. XLAT Translate

XLAT translate-table
Logic: AL « (BX +AL)

XLAT translates bytes via a table lookup. A pointer to a 256-byte translation table is loaded into BX.
The byte to be translated is loaded into AL; it serves as an index (ie, offset) into the translation table.
After the XLAT instruction is executed, the byte in AL is replaced by the byte located AL bytes from the
beginning of the translate-table.

Notes : Translate-table can be less than 256 bytes.
The operand, translate-table, is optional since a pointer to the table must be loaded into BX before the
instruction is executed.

-8-

The following example translates a decimal value (0 to 15) to the corresponding single hexadecimal
digit.

lea bx, hex_table ;pointer to table into BX
mov al, decimal_digit ;digit to be translated to AL
xlat hex_table :translate the value in AL

: ;AL now contains ASCII hex digit
hex_table db '0123456789ABCDEF'

5.2. Aritmetik islem Komutlari
5.2.1. AAA ASCII Adjust after Addition
AAA

Logic: If (AL & OFh)> 9 or (AF = 1) then
AL — AL +6
AH «— AH + 1
AF — 1; CF « 1
else
AF —<0; CF <0
AL — AL & OFh

Converts the number in the lower 4 bits (nibble) of AL to an unpacked BCD number (high-order nibble
of AL is zeroed).

If the lower 4 bits of the number in AL is greater than 9, or the auxiliary carry flag is set, this instruction
converts AL to its unpacked BCD form by adding 6 (subtracting 10) to AL; adding 1 to AH; and setting
the auxiliary flag and carry flags. This instruction will always leave 0 in the upper nibble of AL.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.2. AAD ASCII Adjust before Division
AAD

Logic: AL «— AH*10 + AL
AH 0

AAD converts the unpacked two-digit BCD number in AX into binary in preparation for a division using
DIV or IDIV, which require binary rather than BCD numbers.

AAD modifies the numerator in AL so that the result produced by a division will be a valid unpacked
BCD number. For the subsequent DIV to produce the correct result, AH must be 0. After the division,
the quotient is returned in AL, and the remainder in AH. Both high-order nibbles are zeroed.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.3. AAM ASCII Adjust after Multiply
AAM

Logic: AH < AL/10
AL «— AL MOD 10

This instruction corrects the result of a previous multiplication of two valid unpacked BCD operands. A
valid 2-digit unpacked BCD number is taken from AX, the adjustment is performed, and the result is
returned to AX. The high-order nibbles of the operands that were multiplied must have been 0 for this
instruction to produce a correct result.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.4. AAS ASCII Adjust after Subtraction
AAS

Logic: If (AL & OFh) > 9 or AF =1 then
AL —AL-6
AH «— AH - 1
AF<—1; CF <1
else
AF —0; CF<—0
AL — AL & OFh

AAS corrects the result of a previous subtraction of two valid unpacked BCD operands, changing the
content of AL to a valid BCD number. The destination operand of the subtraction must have been
specified as AL. The high-order nibble of AL is always set to 0.

Note: Unpacked BCD stores one digit per byte; AH contains the most-significant digit and AL the least-
significant digit.

5.2.5. CBW Convert Byte to Word
CBW

Logic: if (AL < 80h) then
AH —0
else
AH — FFh

CBW extends the sign bit of the AL register into the AH register. This instruction extends a signed
byte value into the equivalent signed word value.
Note: This instruction will set AH to OFFh if the sign bit (bit 7) of AL is set; if bit 7 of AL is not set, AH
will be set to 0. The instruction is useful for generating a word from a byte prior to performing byte
division.

-10 -
5.2.6. CWD Convert Word to Doubleword

CWD

Logic: if (AX <8000h) then
DX« 0
else
DX «— FFFFh

CWD extends the sign bit of the AX register into the DX register. This instruction generates the
double-word equivalent of the signed number in the AX register.

Note: This instruction will set DX to OFFFFh if the sign bit (bit 15) of AX is set; if bit 15 of AX is not set,
DX will be set to 0.

5.2.7. DAA Decimal Adjust after Addition
DAA

Logic: If (AL & OFh) > 9 or (AF = 1) then

AL — AL +6
AF — 1

else AF <0

If (AL > 9Fh) or (CF = 1) then
AL — AL + 60h
CF 1

else CF <0

DAA corrects the result of a previous addition of two valid packed decimal operands (note that this
result must be in AL). This instruction changes the content of AL so that it will contain a pair of valid
packed decimal digits.

Note: Packed BCD stores one digit per nibble (4 bits); the least significant digit is in the lower nibble. It
is not possible to apply an adjustment after division or multiplication of packed BCD numbers. If you
need to use multiplication or division, it is better to use unpacked BCD numbers. See, for example,
the description of AAM (ASCII Adjust after Multiply).

-11 -

5.2.8. DAS Decimal Adjust after Subtraction
DAS

Logic: If (AL & OFh)> 9 or (AF = 1) then

AL — AL -6
AF —1

else AF <0

If (AL > 9Fh) or (CF = 1) then
AL — AL - 60h
CF <1

else CF — 0

DAS corrects the result of a previous subtraction of two valid packed decimal operands (note that this
result must be in AL). This instruction changes the content of AL so that it will contain a pair of valid
packed decimal digits.

Note: Packed BCD stores one digit per nibble (4 bits); the least significant digit is in the lower nibble. It
is not possible to apply an adjustment after division or multiplication of packed BCD numbers. If you
need to use multiplication and division, it is better to use unpacked BCD numbers. See, for example,
the description of AAM (ASCII Adjust after Multiply).

5.2.9. DIV Divide, Unsigned
DIV source
Logic: AL « AX/ source ; Source is byte

AH <« remainder

or
AX «— DX:AX / source ; Source is word
DX < remainder

This instruction performs unsigned division. If the source is a byte, DIV divides the word value in AX by
source, returning the quotient in AL and the remainder in AH. If the source is a word, DIV divides the
double-word value in DX:AX by the source, returning the quotient in AX and the remainder in DX.

Notes: If the result is too large to fit in the destination AL or AX), an INT 0 (Divide by Zero) is
generated, and the quotient and remainder are undefined.

When an Interrupt O (Divide by Zero) is generated, the saved CS:IP value on the 80286 and 80386
points to the instruction that failed (the DIV instruction). On the 8088/8086, however, CS:IP points to
the instruction following the failed DIV instruction.

-12 -

5.2.10. IDIV Integer Divide, Signed
IDIV source
Logic: AL « AX/ source ; Byte source

AH < remainder

or
AX «— DX:AX / source ; Word source
DX < remainder

IDIV performs signed division. If source is a byte, IDIV divides the word value in AX by source,
returning the quotient in AL and the remainder in AH. If source is a word, IDIV divides the double-word
value in DX:AX by source, returning the quotient in AX and the remainder in DX.

Notes: If the result is too large to fit in the destination (AL or AX), an INT 0 (Divide by Zero) is
generated, and the quotient and remainder are undefined.

The 80286 and 80386 microprocessors are able to the largest negative number (80h or 8000h) as a
quotient for this instruction, but the 8088/8086 will generate an Interrupt O (Divide by Zero) if this
situation occurs.

When an Interrupt O (Divide by Zero) is generated, the saved CS:IP value on the 80286 and 80386
points to the instruction that failed (the IDIV instruction). On the 8088/8086, however, CS:IP points to
the instruction following the failed IDIV instruction.

5.2.11. MUL Multiply, Unsigned
MUL source
Logic: AX < source * AL ; if source is a byte
> DX:AX = source * AX ; if source is a word

MUL performs unsigned multiplication. If source is a byte, MUL
multiplies source by AL, returning the product in AX. If source is a

word, MUL multiplies source by AX, returning the product in DX:AX. The
Carry and Overflow flags are set if the upper half of the result (AH

for a byte source, DX for a word source) contains any significant

digits of the product, otherwise they are cleared.

-13 -

5.2.12. IMUL Integer Multiply, Signed
IMUL source
Logic: AX « AL * source ; if source is a byte
> DX:AX «— AX * source ; if source is a word

IMUL performs signed multiplication. If source is a byte, IMUL
multiplies source by AL, returning the product in AX. If source is a
word, IMUL multiplies source by AX, returning the product in DX:AX.
The Carry Flag and Overflow Flag are set if the upper half of the
result (AH for a byte source, DX for a word source) contains any
significant digits of the product, otherwise they are cleared.

5.2.13. CMP Compare
CMP destination,source

Logic: Flags set according to result of
(destination - source)

CMP compares two numbers by subtracting the source from the
destination and updates the flags. CMP does not change the source or
destination. The operands may be bytes or words.

5.3. Lojik islem Komutlari
5.3.1. ROL Rotate Left

CF <—|;—Destination 4—’

5.3.2. ROR Rotate Right

<
\—b Destination > CF

ROL destination,count

ROR destination,count

-14 -

5.3.3. RCL Rotate through Carry Left

RCL destination,count

>
CF <+ Destination
5.3.4. RCR Rotate through Carry Right

RCR destination,count

.

5.3.5. SAL/SHL

SAL/SHL destination,count

Destination —>

CF

Shift Arithmetic Left/Shift Logical Left

CF |<4—| Destination |<4— 0
5.3.6. SHR Shift Logical Right
SHR destination,count
0 —»| Destination |—| CF
5.3.7. SAR Shift Arithmetic Right

SAR destination,count

SF

—» | Destination |—»

CF

-15-

5.4. Dizi islem Komutlari

5.4.1. REP Repeat

REP string-instruction

Logic: while CX<>0 ;for MOVS, LODS or STOS

execute string instruction
CX«—CX-1

while CX <> 0
execute string instruction ;for CMPS or SCAS
CX«—CX-1
if ZF = 0 terminate loop

REP is a prefix that may be specified before any string instruction

(CMPS, LODS, MOVS, SCAS, and STOS). REP causes the string instruction
following it to be repeated, as long as CX does not equal 0; CX is
decremented after each execution of the string instruction. (For CMPS

and SCAS, REP will also terminate the loop if the Zero Flag is clear

after the string instruction executes.)

Notes:

If CX is initially O, the REPeated instruction is
skipped entirely.

The test for CX equal to 0 is performed before the
instruction is executed. The test for the Zero Flag
clear—done only for CMPS and SCAS—is performed
after the instruction is executed.

REP, REPE (Repeat While Equal), and REPZ (Repeat
While Zero) are all synonyms for the same
instruction.

REPNZ (Repeat Not Zero) is similar to REP, but when
used with CMPS and SCAS, will terminate with the
Zero Flag set, rather than cleared.

REP is generally used with the MOVS (Move String)
and STOS (Store String) instructions; it can be
thought of as "repeat while not end of string."

Example: The following example moves 100 bytes from BUFFER1 to BUFFER2:

CLD :Move in the forward direction
LEA SI,BUFFER1 ;Source pointer to Si

LEA DI, BUFFER2 ; ...and destination to DI
MOV CX,100 :REP uses CX as the counter

REP MOVSB ; ...and do it

-16 -

5.4.2. REPNE Repeat While not Equal

REPNE string-instruction

Logic: while CX<>0 ;for MOVS, LODS or STOS
execute string instruction
CX«—CX-1
while CX <> 0 ;for CMPS or SCAS
execute string instruction
CX«—CX-1

if ZF <> 0 terminate loop ;This is only difference
;between REP and REPNE

REPNE is a prefix that may be specified before any string instruction
(CMPS, LODS, MOVS, SCAS, and STOS). REPNE causes the string
instruction following it to be repeated, as long as CX does not equal

0; CX is decremented after each execution of the string instruction.
(For CMPS and SCAS, REP will also terminate the loop if the Zero Flag
is set after the string instruction executes. Compare this to REP,

which will terminate if the Zero Flag is clear.)

Notes: If CX is initially 0, the REPeated instruction is
skipped entirely.

The test for CX equal to 0 is performed before the
instruction is executed. The test for the Zero Flag
set—-done only for CMPS and SCAS—is performed after
the instruction is executed.

REPNE and REPNZ are synonyms for the same
instruction.

You do not need to initialize ZF before using
repeated string instructions.

Example :The following example will find the first byte equal to 'A’ in the 100-byte buffer at STRING.

CLD ;Scan string in forward direction
MOV AL/A' :Scan for 'A’
LEA DI, STRING ;Address to start scanning at
MOV CX,100 ;Scanning 100 bytes

REPNE SCASB ; ...and scan it
DEC Dl ;Back up DI to point to the 'A’

Upon termination of the repeated SCASB instruction, CX will be equal
to zero if a byte value of 'A' was not found in STRING, and non-zero
if it was.

-17 -

5.4.3. MOVSB Move String Byte
MOVSB

Logic: (ES:DI) < (DS:Sl)
if DF =0
Sl Sl +1
DI < DI + 1
else
Sl «— Sl -1
Dl < DI -1

This instruction copies the byte pointed to by DS:Sl into the location
pointed to by ES:DI. After the move, Sl and DI are incremented (if the
direction flag is cleared) or decremented (if the direction flag is
set), to point to the next byte.
Example : Assuming BUFFER1 as been defined somewhere as:
BUFFFER1 DB 100 DUP (?)
the following example moves 100 bytes from BUFFER1 to BUFFERZ2:
CLD ;Move in the forward direction

LEA SI, BUFFER1 ;Source address to Sl
LEA DI, BUFFER2 ;Destination address to DI

MOV CX,100 ;CX is used by the REP prefix
REP MOVSB ;...and move it.
5.4.4. MOVSW Move String Word
MOVSW

Logic: (ES:Dl) « (DS:Sl)
if DF =0
SI—Sl+2
Dl «— DI +2
else
Sl SI-2
Dl —DI-2

This instruction copies the word pointed to by DS:Sl to the location
pointed to by ES:DI. After the move, Sl and DI are incremented (if the
direction flag is cleared) or decremented (if the direction flag is

set), to point to the next word.

-18 -

Example : Assuming BUFFER1 as been defined somewhere as:
BUFFFER1 DB 100 DUP (?)

the following example moves 50 words (100 bytes) from BUFFER1 to
BUFFER2:
CLD :Move in the forward direction
LEA SI, BUFFER1 ;Source address to Sl
LEA DI, BUFFER2 ;Destination address to DI
MOV CX,50 ;Used by REP; moving 50 words
REP MOVSW ;...and move it.

5.4.5. CMPS Compare String (Byte or Word)
CMPS destination-string,source-string

Logic: CMP (DS:Sl), (ES:DI) ; Sets flags only

if DF =0
Sl Sl+n ; n =1 for byte, 2 for word
Dl «—DIl+n
else
Sl Sl-n
Dl < DI-n

This instruction compares two values by subtracting the byte or word pointed to by ES:DI, from the
byte or word pointed to by DS:Sl, and sets the flags according to the results of the comparison. The
operands themselves are not altered. After the comparison, Sl and DI are incremented (if the direction
flag is cleared) or decremented (if the direction flag is set), in preparation for comparing the next
element of the string.
Note: This instruction is always translated by the assembler into either CMPSB, Compare String Byte,
or CMPSW, Compare String Word, depending upon whether source refers to a string of bytes or
words. In either case, you must explicitly load the Sl and DI registers with the offset of the source and
destination strings.
Example:
Assuming the definition:

buffert db 100 dup (?)

buffer2db 100 dup (?)
the following example compares BUFFER1 against BUFFER2 for the first mismatch.

cld ;Scan in the forward direction

mov c¢x, 100 ;Scanning 100 bytes (CX is used by REPE)

lea si, buffer1 ;Starting address of first buffer

lea di, buffer2 ;Starting address of second buffer
repe cmps buffer1,buffer2 ;...and compare it.

jne mismatch ;The Zero Flag will be cleared if there
;is @ mismatch
match:) ;If we get here, buffers match
mismatch:
dec si ;If we get here, we found a mismatch.

dec di ;Back up Sl and DI so they point to the first mismatch

-19 -

Upon exit from the REPE CMPS loop, the Zero Flag will be cleared if a mismatch was found, and set
otherwise. If a mismatch was found, DI and Sl will be pointing one byte past the byte that didn't match;
the DEC DI and DEC Sl backup these registers so they point to the mismatched characters.

5.4.6. CMPSB Compare String Byte
CMPSB

Logic: CMP (DS:Sl), (ES:DI) ; Sets flags only
if DF =0
Sl SI+1
DI < DI + 1
else
Sl « Sl -1
DI «— DI -1

This instruction compares two values by subtracting the byte pointed
to by ES:DlI, from the byte pointed to by DS:Sl, and sets the flags
according to the results of the comparison. The operands themselves
are not altered. After the comparison, Sl and DI are incremented (if
the direction flag is cleared) or decremented (if the direction flag

is set), in preparation for comparing the next element of the string.

Example: The following example compares BUFFER1 against BUFFER?2 for the first
mismatch.

cld :Scan in the forward direction

mov c¢x, 100 ;Scanning 100 bytes (CX is used by REPE)
lea si, buffer1 ;Starting address of first buffer

lea di, buffer2 ;Starting address of second buffer

repe cmpsb ; ...and compare it.
jne mismatch ;The Zero Flag will be cleared if there
; is a mismatch
match: . ;If we get here, buffers match
mismatch:
dec si ;If we get here, we found a mismatch.
dec di ;Back up Sl and DI so they point to the

: ; first mismatch
Upon exit from the REPE CMPSB loop, the Zero Flag will be cleared if a mismatch was found, and set
otherwise. If a mismatch was found, DI and Sl will be pointing one byte past the byte that didn't match;
the DEC DI and DEC SI instructions backup these registers so they point to the mismatched
characters.

-20 -

5.4.7. CMPSW Compare String Word
CMPSW
Logic: CMP (DS:Sl), (ES:DI) ; Sets flags only
if DF =0
Sl SI+2
Dl — DI+ 2
else
Sl SI-2
Dl —DI-2

This instruction compares two numbers by subtracting the word pointed
to by ES:DlI, from the word pointed to by DS:Sl, and sets the flags
according to the results of the comparison. The operands themselves
are not altered. After the comparison, Sl and DI are incremented (if

the direction flag is cleared) or decremented (if the direction flag

is set), in preparation for comparing the next element of the string.

Example :The following example compares BUFFER1 against BUFFER2 for the first

mismatch.
cld
mov c¢x, 50
lea si, buffer1
lea di, buffer2
repe cmpsw
jne mismatch
match:
mismatch:
dec si
dec si
dec di
dec di

:Scan in the forward direction

;Scanning 50 words (100 bytes)
;Starting address of first buffer
;Starting address of second buffer
; ...and compare it.
;The Zero Flag will be cleared if there
is @ mismatch
;If we get here, buffers match

;If we get here, we found a mismatch.
;Back up DI and Sl so they point to the
; first mismatch

Upon exit from the REPE CMPSW loop, the Zero Flag will be cleared if a
mismatch was found, and set otherwise. If a mismatch was found, DI and
S| will be pointing one word (two bytes) past the word that didn't

match; the DEC DI and DEC Sl pairs backup these registers so they
point to the mismatched characters.

-21 -

5.4.8. SCAS Scan String (Byte or Word)

SCAS destination-string

Logic: CMP Accumulator, (ES:DI) ;Sets flags only

if DF =0

DI —DIl+n ;n =1 for byte, 2 for word
else

Dl < DI -n

This instruction compares the accumulator (AL or AX) to the byte or
word pointed to by ES:DI. SCAS sets the flags according to the results
of the comparison; the operands themselves are not altered. After the
comparison, Dl is incremented (if the direction flag is cleared) or
decremented (if the direction flag is set), in preparation for

comparing the next element of the string.

Notes: This instruction is always translated by the
assembler into either SCASB, Scan String Byte, or
SCASW, Scan String Word, depending upon whether
destination-string refers to a string of bytes or
words. In either case, however, you must explicitly
load the DI register with the offset of the string.

SCAS is useful for searching a block for a given
byte or word value. Use CMPS, Compare String, if you
wish to compare two strings (or blocks) in memory,
element by element.

Example : Assuming the definition:

LOST A DB 100 DUP(?)

the following example searches the 100-byte block starting at LOST_A
for the character 'A' (65 decimal).

MOV AX, DS
MOV ES, AX ;SCAS uses ES:DI, so copy DS to ES
CLD :Scan in the forward direction
MOV AL,'A ;Searching for the lost 'A’
MOV CX,100 ;Scanning 100 bytes (CX is used by REPNE)
LEA DI, LOST_A ;Starting address to DI
REPNE SCAS LOST A ; ...and scan it.
JE FOUND ;The Zero Flag will be set if we found
; a match.

NOTFOUND:) ;If we get here, no match was found

FOUND: bEC DI ;Back up DI so it points to the first matching 'A’

-22 -

Upon exit from the REPNE SCAS loop, the Zero Flag will be set if a match was found, and cleared
otherwise. If a match was found, DI will be pointing one byte past the match location; the DEC DI at
FOUND takes care of this problem.

5.4.9. LODSB Load String Byte
LODSB

Logic: AL « (DS:Sl)
if DF =0
Sl Sl +1
else
Sl Sl-1

LODSB transfers the byte pointed to by DS:Sl into AL and increments or
decrements Sl (depending on the state of the Direction Flag) to point
to the next byte of the string.

Note: Although it is legal to repeat this instruction, it
is almost never done since doing so would
continually overwrite the value in AL.

Example : The following example sends the eight bytes at INIT_PORT to port 250.
(Don't try this on your machine, unless you know what's hanging off
port 250.)

INIT_PORT:
DB '$CMDO0000' ;The string we want to send

CLD ;Move forward through string at INIT_PORT

LEA SI, INIT_PORT ;Sl gets starting address of string

MOV CX, 8 :CX is counter for LOOP instruction
AGAIN: LODSB ;Load a byte into AL...

OUT 250,AL ; ...and output it to the port.

LOOP AGAIN

-23 -

5.4.10. LODSW Load String Word
LODSW
Logic: AX « (DS:Sl)
if DF =0
Sl SI+2
else
Sl SI-2

LODSW transfers the word pointed to by DS:Sl into AX and increments or
decrements Sl (depending on the state of the Direction Flag) to point
to the next word of the string.

Note: Although it is legal to repeat this instruction, it
is almost never done since doing so would
continually overwrite the value in AL.

Example : The following example sends the eight bytes at INIT_PORT to port 250.
(Don't try this on your machine, unless you know what's hanging off
port 250.)

INIT_PORT:
DB 'SCMDO0000' ;The string we want to send

CLD ;Move forward through string at INIT_PORT
LEA SI, INIT_PORT ;SI gets starting address of string
MOV CX 4 ;Moving 4 words (8 bytes)
AGAIN: LODSW :Load a word into AX...
OuT 250,AX ; ...and output it to the port.
LOOP AGAIN
5.4.11. STOSB Store String Byte
STOSB
Logic: (ES:DI) « AL
ifDF =0
Dl — DI +1
else
DIl «— DI -1

STOSB copies the value in AL into the location pointed to by ES:DI. DI
is then incremented (if the direction flag is cleared) or decremented

(if the direction flag is set), in preparation for storing AL in the

next location.

-24 -

Notes: This instruction is always translated by the
assembler into either STOSB, Store String Byte, or
STOSW, Store String Word, depending upon whether
destination-string refers to a string of bytes or
words. In either case, however, you must explicitly
load the DI register with the offset of the string.

Example : When used in conjunction with the REP prefixes, the Store String instructions are useful for
initializing a block of memory. For example, the following code would initialize the 100-byte memory
block at BUFFER to O:

MOV AL,0 :The value to initialize BUFFER to
LEA DI,BUFFER ;Starting location of BUFFER
MOV CX,100 ;Size of BUFFER

CLD :Let's move in forward direction

REP STOS BUFFER ;Compare this line to example for STOSB

5.4.12. STOSW Store String Word
Logic: (ES:DI) «— AX
if DF =0
Dl —DI+2
else
DI —DI-2

STOSW copies the value in AX into the location pointed to by ES:DI. DI
is then incremented (if the direction flag is cleared) or decremented
(if the direction flag is set), in preparation for storing AX in the
next location.
When used in conjunction with the REP prefixes, the Store String
instructions are useful for initializing a block of memory. For
When used in conjunction with the REP prefixes, the Store String
instructions are useful for initializing a block of memory. For
example, the following code would initialize the 100-byte memory block
at BUFFER to O:

MOV AX,0 :The value to initialize BUFFER to
LEA DI,BUFFER ;Starting location of BUFFER
MOV CX,50 :Size of BUFFER, in words

CLD :Let's move in forward direction

REP STOSW ;Compare this line to example for STOS

-25-

5.5. Denetim Aktarma Komutlari
5.5.1. JMP Jump Unconditionally

JMP target
Jump Condition: Jump always

JMP always transfer control to the target location. Unlike CALL, JMP
does not save IP, because no RETurn is expected. An intrasegment JMP
may be made either through memory or through a 16-bit register; an
intersegment JMP can be made only through memory.

Notes: If the assembler can determine that the target of an
intrasegment jump is within 127 bytes of the current
location, the assembler will automatically generate
a short-jump (two-byte) instruction; otherwise, a 3-
byte NEAR JMP is generated.

You can force the generation of a short jump by
explicit use of the operator "short," as in:

JMP short near_by

5.5.2. CALL Call Procedure

CALL procedure_name

Logic: if FAR CALL (inter-segment)
PUSH CS
CS « dest_seg
PUSH IP
IP «— dest_offset

CALL transfers control to a procedure that can either be within the
current segment (a NEAR procedure) or outside it (a FAR procedure).
The two types of CALLs result in different machine instructions, and
the RET instruction that exits from the procedure must match the type
of the CALL instruction (the potential for mismatch exists if the
procedure and the CALL are assembled separately).

-26 -

5.5.3. RET Return from Procedure
RET optional-pop-value

Logic: POP IP
If FAR RETURN (inter-segment)
POP CS
SP « SP + optional-pop-value (if specified)

RET transfers control from a called procedure back to the instruction
following the CALL, by:
m Popping the word at the top of the stack into IP
m [f the return is an intersegment return:
m Popping the word now at the top of the stack into CS
m Adding the optional-pop-value, if specified, to SP
The assembler will generate an intrasegment RET if the procedure containing the RET was
designated by the programmer as NEAR, and an intersegment RET if it was designated FAR. The
optional-pop-value specifies a value to be added to SP, which has the effect of popping

5.5.4. JA Jump If Above
JA short-label
Jump Condition: Jump if CF=0and ZF =0

Used after a CMP or SUB instruction, JA transfers control to short-label if the first operand (which
should be unsigned) was greater than the second operand (also unsigned). The target of the jump
must be within -128 to +127 bytes of the next instruction.

Notes: JNBE, Jump Not Below or Equal, is the same instruction as JA.

JA, Jump on Above, should be used when comparing unsigned numbers.
JG, Jump on Greater, should be used when comparing signed numbers.

5.5.5. JAE Jump If Above or Equal
JAE short-label

Jump Condition: Jump if CF =0
Used after a CMP or SUB instruction, JAE transfers control to short-label if the first operand (which
should be unsigned) was greater than or equal to the second operand (also unsigned). The target of
the jump must be within -128 to +127 bytes of the next instruction.
Notes: JNB (Jump Not Below) is the same instruction as JAE.

JAE, Jump on Above or Equal, should be used when comparing unsigned numbers.
JGE, Jump on Greater or Equal, should be used when comparing signed numbers.

-27 -

5.5.6. JC Jump If Carry
JC short-label
Jump Condition: Jump if CF = 1

JC transfers control to short-label if the Carry Flag is set. The
target of the jump must be within -128 to +127 bytes of the next
instruction.

Note: JB (Jump if Below), JC, and JNAE (Jump if Not Above or Equal) are all synonyms for the same
instruction.
Use JNC, Jump if No Carry, to jump if the carry flag is clear.

5.5.7. LOOP Loop on Count
LOOP short-label

Logic: CX <« CX-1
If (CX <>0)
JMP short-label

LOOP decrements CX by 1, then transfers control to short-label if CX
is not 0. Short-label must be within -128 to +127 bytes of the next
instruction.

5.5.8. LOOPE Loop While Equal
LOOPE short-label

Logic: CX« CX-1
If CX<>0andZF =1
JMP short-label

Used after a CMP or SUB, LOOPE decrements CX by 1, then transfers
control to short-label if the first operand of the CMP or SUB is equal

to the second operand. Short-label must be within -128 to +127 bytes
of the next instruction.

Note: LOOPZ, Loop if Zero, is the same instruction.

-28 -

5.5.9. LOOPNE Loop While not Equal

LOOPNE short-label
Logic: CX« CX-1
IfCX<>0and ZF =0
JMP short-label
Used after a CMP or SUB, LOOPNE decrements CX by 1, then transfers
control to short-label if the first operand of the CMP or SUB is not
equal to the second operand. Short-label must be within -128 to +127
bytes of the next instruction.
Note : LOOPNZ, Loop While Not Zero, is the same instruction.
5.5.10. JCXZ Jump If CX Register Zero
JCXZ short-label
Jump Condition: Jump if CX =0

JCXZ transfers control to short-label if the CX register is 0. The target of the jump must be within -128
to +127 bytes of the next instruction.

Note: This instruction is commonly used at the beginning of a loop to bypass the loop if the counter
variable (CX) is at 0.

5.5.11. INT Interrupt

INT interrupt-num

Logic: PUSHF ; Push flags onto stack
TF <0 ; Clear Trap Flag
IF <0 ; Disable Interrupts

CALL FAR (INT*4) ; Call the interrupt handler

INT pushes the flags register, clears the Trap and Interrupt-enable Flags, pushes CS and IP, then
transfers control to the interrupt handler specified by the interrupt-num. If the interrupt handler returns
using an IRET instruction, the original flags are restored.

Notes: The flags are stored in the same format as that used by the PUSHF instruction.The address of
the interrupt vector is determined by multiplying the interrupt-num by 4. The first word at the resulting
address is loaded into IP, and the second word into CS.

All interrupt-nums except type 3 generate a two-byte opcode; type 3 generates a one-byte instruction
called the Breakpoint interrupt.

5.5.12. IRET Interrupt Return
IRET

-29 -

Logic: POP IP
POP CS

POPF ; Pop flags from stack

IRET returns control from an interrupt routine to the point where the
interrupt occurred, by popping IP, CS, and the Flag registers.

5.5.13. HARDWARE INTERRUPTS

INT 00h (0) Divide by 0

INT 01h (1) Single Step

INT 02h (2) Non-Maskable Interrupt (NMI)

INT 03h (3) Breakpoint

INT 04h (4) Overflow

INT 05h (5) Print Screen

INT 08h (8) System Timer

INT 09h (9) Keyboard

INT 10h (16) Video and Screen Services

INT 11h (17) Read Equipment-List

INT 12h (18) Report Memory Size

INT 13h (19) Disk 1/O Services, Floppy and Hard Disks
INT 14h (20) Serial /0O Services (Communications Ports)
INT 15h (21) Cassette and Extended Services
INT 16h (22) Keyboard I/O Services

INT 17h (23) Printer 1/0O Services

INT 18h (24) BASIC Loader Service

INT 19h (25) Bootstrap Loader Service

INT 1Ah (26) System Timer and Clock Services
INT 1Bh (27) Keyboard Break

INT 1Ch (28) User Timer Tick

INT 4Ah (74) User Alarm

INT 70h (112)

Example: INT 05h (5)

Real-Time Clock

Print Screen

Prints the current screen contents to the first parallel printer (LPT1).

This interrupt can be called from within a program as well as by means of the Shift-PrtSc key
combination. The service returns no register values but sets a status code at memory location
0000:0500h. The possible values of this status code, and their meanings, are as follows:

00h Print Screen not called, or operation completed
01h Print Screen currently in progress
FFh Error encountered during most recent Print Screen

5.5.14. DOS INTERRUPTS

INT 20h (32) Terminate Program

INT 21h (3
INT 22h (3
INT 23h (3
INT 24h (3
INT 25h (3
INT 26h (3
INT 27h (3
INT 28h (4
INT 29h (41)
INT 2Ah (42)
INT 2Bh (43)
INT 2Ch (44)
INT 2Dh (45)
INT 2Eh (46)

3)
4)
5)
6)
7)
8)
9)
0)

INT 2Fh... (47)

INT 2Fh (47)
INT 2Fh (47
INT 2Fh (47
INT 2Fh (47
INT 30h (48

N N’ N N

Example : INT 25h (37)

-30 -

DOS Service Calls
Terminate Address

Break Address

Critical-Error Handler Address
Absolute Disk Read

Absolute Disk Write
Terminate and Stay Resident
Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Multiplex Interrupt

Multiplex Interrupt (PRINT)
Multiplex Interrupt (ASSIGN)
Multiplex Interrupt (SHARE)
Multiplex Interrupt (APPEND)
Reserved

Overview

Absolute Disk Read

Reads one or more sectors on a specified logical disk.

On entry:

Returns:

AL Drive number (0=A, 1=B)

CX Number of sectors to read

DX Starting sector number

DS:DX Buffer to store sector read

AX Error code (if CF is set; see below)
Flags DOS leaves the flags on the stack

5.5.15. DOS FUNCTIONS

Terminate Program
Read Keyboard Character and Echo
Character Output
Auxiliary Character Input
Auxiliary Character Output
Printer Character Output
Direct Console Character I/0O
Direct Console Character Input without Echo
Console Character Input without Echo
Print String
Buffered Input
Check Standard Input Status
Clear Input Buffer, then Invoke Function
Disk Reset
Select Default Drive

"1 DOS 3.1
1 DOS 3.1
1 DOS 3.1
1 DOS 3.1

-31 -

OFh (15) Open File, Using FCBs

10h (16) Close File, Using FCBs

11h (17) Search for First Matching File, Using FCBs
12h (18) Search for Next Matching File, Using FCBs
13h (19) Delete File, Using FCBs

14h (20) Sequential Read, Using FCBs

Example : Function 01h (1) Read Keyboard Character and Echo

Reads a character from the standard input device (usually the
keyboard), and echoes it to the standard output device (usually the
screen).

Onentry: AH 01h
Returns: AL Character read

Extended ASCII For the special keys, such as the cursor and
function keys, this function returns a 0 in AL; call
the function again to read the extended code of the
special character. (See the Key codes for a listing
of the extended codes.)

Ctrl-Break & DOS generates an INT 23h.

Ctrl-C
Note: This function checks for Ctrl-Break and Ctrl-C. Use Function 07h if you don't wish to check Ctrl-
Break and Ctrl-C.

5.6. islemci Denetim Komutlari
5.6.1. ESC Escape

ESC coprocessor's-opcode,source

ESC is used to pass control from the microprocessor to a coprocessor,
such as an 8087 or 80287. In response to ESC, the microprocessor
accesses a memory operand—-the instruction for the coprocessor—and
places it on the bus. The coprocessor watches for ESC commands and
executes the instruction placed on the bus, using the effective

address of source.

Notes : In order to synchronize with the math coprocessor, the programmer must explicitly code the
WAIT instruction preceding all ESC instructions. The instruction preceding all ESC instructions. The
80286 and 80386 have automatic instruction

synchronization, hence WAITs are not needed.

5.6.2. HLT Halt the Processor
HLT

-32-

This instruction halts the CPU. The processor leaves the halted state
in response to a non-maskable interrupt; a maskable interrupt with
interrupts enabled; or activation of the reset line.

5.6.3. WAIT Wait
Logic: None

WAIT causes the processor to enter a wait state. The processor will
remain inactive until the TEST input on the microprocessor is driven
active.

Notes : This instruction is used to synchronize external
hardware, such as a coprocessor.

5.6.4. LOCK Lock the Bus
LOCK

LOCK is a one-byte prefix that can precede any instruction. LOCK
causes the processor to assert its bus lock signal while the
instruction that follows is executed. If the system is configured such
that the LOCK signal is used, it prevents any external device or event
from accessing the bus, including interrupts and DMA transfers.

Note: This instruction was provided to support multiple
processor systems with shared resources. In such a
system, access to those resources is generally
controlled via a software-hardware combination using
semaphores.

This instruction should only be used to prevent

other bus masters from interrupting a data movement
operation. This prefix should only be used with
XCHG, MOV, and MOVS.

